

Chapter 6

Energy and Life

The Energy of Life

- The living cell is a miniature chemical factory where thousands of reactions occur
- Cellular respiration extracts energy stored in sugars and other fuels
- Cells apply this energy to perform work
- Some organisms even convert energy to light, as in bioluminescence

© 2018 Pearson Education Ltd.

Concept 6.1: An organism's metabolism transforms matter and energy, subject to the laws of thermodynamics

- Metabolism is the totality of an organism's chemical reactions
- Metabolism is an emergent property of life that arises from orderly interactions between molecules

Organization of the Chemistry of Life into Metabolic Pathways

- A metabolic pathway begins with a specific molecule and ends with a product
- Each step is catalyzed by a specific enzyme

- Catabolic pathways release energy by breaking down complex molecules into simpler compounds
- Cellular respiration, the breakdown of glucose in the presence of oxygen, is an example of a pathway of catabolism

© 2018 Pearson Education Ltd.

© 2018 Pearson Education Ltd.

- Anabolic pathways consume energy to build complex molecules from simpler ones
 - For example, the synthesis of protein from amino acids is an anabolic pathway
- Bioenergetics is the study of how energy flows through living organisms

Forms of Energy

- Energy is the capacity to cause change
- Energy exists in various forms, some of which can perform work

Concept 6.2: The free-energy change of a reaction tells us whether or not the reaction occurs spontaneously

- Biologists want to know which reactions occur spontaneously and which require input of energy
- To do so, they need to determine the energy and entropy changes that occur in chemical reactions

© 2018 Pearson Education Ltd.

• The change in free energy:

 $\Delta G = G$ final state (products) – G initial state substrates

- ΔG is negative for all spontaneous processes; processes with zero or positive ΔG are never spontaneous
- Spontaneous processes can be harnessed to perform work

Free-Energy Change, ΔG

 A living system's free energy is energy that can do work when temperature and pressure are uniform, as in a living cell

© 2018 Pearson Education Ltd.

Free Energy, Stability, and Equilibrium

- Free energy is a measure of a system's instability, its tendency to change to a more stable state
- During a spontaneous change, free energy decreases and the stability of a system increases
- Equilibrium is a state of maximum stability
- A process is spontaneous and can perform work only when it is moving toward equilibrium

Figure 6.5

© 2018 Pearson Education Ltd.

Exergonic and Endergonic Reactions in Metabolism

- An exergonic reaction proceeds with a net release of free energy and is spontaneous
- An endergonic reaction absorbs free energy from its surroundings and is nonspontaneous

Free Energy and Metabolism

 The concept of free energy can be applied to the chemistry of life's processes

Equilibrium and Metabolism

 Reactions in a closed system eventually reach equilibrium and can then do no work

© 2018 Pearson Education Ltd.

- Cells are not in equilibrium; they are open systems experiencing a constant flow of materials
- A defining feature of life is that metabolism is never at equilibrium
- A catabolic pathway in a cell releases free energy in a series of reactions

© 2018 Pearson Education Ltd.

Figure 6.8

Figure 6.6 (a) Exergonic reaction: energy released, spontaneous Reactants Amount of energy released $(\Delta G < 0)$ Products Progress of the reaction

- Catabolic pathways release energy by breaking down complex molecules into simpler compounds
- Cellular respiration, convert potential energy stored in biomolecules (breakdown of glucose) in the presence of oxygen into available energy for cellular work
- Anabolic pathways consume energy to build/synthesis of complex molecules from simpler ones
- For example, the synthesis of protein from amino acids is an anabolic pathway

Figure 6.9

Concept 6.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions

- A cell does three main kinds of work:
 - Chemical work—pushing endergonic reactions
 - Transport work—pumping substances against the direction of spontaneous movement
 - Mechanical work—such as contraction of muscle cells

- To do work, cells manage energy resources by energy coupling, the use of an exergonic process to drive an endergonic one
- Cells use energy from catabolism to drive reactions in anabolism.
- Most energy coupling in cells is mediated by ATP

The Structure and Hydrolysis of ATP

- ATP (adenosine triphosphate) is the cell's energy shuttle
- ATP is composed of ribose (a sugar), adenine (a nitrogenous base), and three phosphate groups

- The bonds between the phosphate groups of ATP's tail can be broken by hydrolysis
- Energy is released from ATP when the terminal phosphate bond is broken
- This release of energy comes from the chemical change to a state of lower free energy, not from the phosphate bonds themselves

Figure 6.9b

How the Hydrolysis of ATP Performs Work

- The three types of cellular work (mechanical, transport, and chemical) are powered by the hydrolysis of ATP
- In the cell, the energy from the exergonic reaction of ATP hydrolysis can be used to drive an endergonic reaction
- Overall, the coupled reactions are exergonic

- ATP drives endergonic reactions by phosphorylation, transferring a phosphate group to some other molecule, such as a reactant
- The recipient molecule is now called a phosphorylated intermediate

- Transport and mechanical work in the cell are also powered by ATP hydrolysis
- ATP hydrolysis leads to a change in protein shape and binding ability

Figure 6.12

The Regeneration of ATP

- ATP is a renewable resource that is regenerated by addition of a phosphate group to adenosine diphosphate (ADP)
- The energy to phosphorylate ADP comes from catabolic reactions in the cell
- The ATP cycle is a revolving door through which energy passes during its transfer from catabolic to anabolic pathways

Concept 6.4: Enzymes speed up metabolic reactions by lowering energy barriers

- Enzymes: mostly proteins
- A catalyst is a chemical agent that speeds up (increase rate) a reaction without being consumed by the reaction
- do not change the free energy change or direction of the reaction
- An enzyme is a catalytic protein
 - For example, sucrase is an enzyme that catalyzes the hydrolysis of sucrose

Sucrase Sucrase $(C_{12}H_{22}O_{11})$ Sucrase $(C_{6}H_{12}O_{6})$ $(C_{6}H_{12}O_{6})$ $(C_{6}H_{12}O_{6})$

The Activation Energy Barrier

- Every chemical reaction between molecules involves bond breaking and bond forming
- The initial energy needed to start a chemical reaction is called the free energy of activation, or activation energy (E_A)
- Activation energy is often supplied in the form of thermal energy that the reactant molecules absorb from their surroundings

Progress of the reaction →

Animation: How Enzymes Work

How Enzymes Speed Up Reactions

- In catalysis, enzymes or other catalysts speed up specific reactions by lowering the E_A barrier
- Enzymes do not affect the change in free energy (ΔG); instead, they hasten reactions that would occur eventually

Progress of the reaction →

Substrate Specificity of Enzymes

- The reactant that an enzyme acts on is called the enzyme's substrate
- The enzyme binds to its substrate, forming an enzyme-substrate complex
- While bound, the activity of the enzyme converts substrate to product

- The reaction catalyzed by each enzyme is very specific
- The active site is the region on the enzyme where the substrate binds
- Induced fit of a substrate brings chemical groups of the active site into positions that enhance their ability to catalyze the reaction

Active site Enzyme Enzyme Enzyme-substrate complex

Catalysis in the Enzyme's Active Site

- In an enzymatic reaction, the substrate binds to the active site of the enzyme
- Enzymes are extremely fast acting and emerge from reactions in their original form
- Very small amounts of enzyme can have huge metabolic effects because they are used repeatedly in catalytic cycles

orienting substinition conds (fraining substitute bout prividing form microsunvious

- The active site can lower an E_A barrier by
 - orienting substrates correctly
 - straining substrate bonds
 - providing a favorable microenvironment
 - covalently bonding to the substrate

- The rate of an enzyme-catalyzed reaction can be sped up by increasing substrate concentration
- When all enzyme molecules have their active sites engaged, the enzyme is saturated
- If the enzyme is saturated, the reaction rate can only be sped up by adding more enzyme

Effects of Temperature and pH

- Each enzyme has an optimal temperature in which it can function
- Each enzyme has an optimal pH in which it can function
- Optimal conditions favor the most active shape for the enzyme molecule

Effects of Local Conditions on Enzyme Activity

- An enzyme's activity can be affected by
 - general environmental factors, such as temperature and pH
 - chemicals that specifically influence the enzyme

Figure 6.17

Trypsin (intestinal

Cofactors

- Cofactors are nonprotein enzyme helpers
- Cofactors may be inorganic (such as a metal in ionic form) or organic
- An organic cofactor is called a coenzyme
- Coenzymes include vitamins

Figure 6.18

Enzyme Inhibitors

- Competitive inhibitors bind to the active site of an enzyme, competing with the substrate
- Noncompetitive inhibitors bind to another part of an enzyme, causing the enzyme to change shape and making the active site less effective
- Some examples of inhibitors are toxins, poisons, pesticides, and antibiotics

Concept 6.5: Regulation of enzyme activity helps control metabolism

- Chemical chaos would result if a cell's metabolic pathways were not tightly regulated
- A cell does this by switching on or off the genes that encode specific enzymes or by regulating the activity of enzymes

Allosteric Regulation of Enzymes

- Allosteric regulation may either inhibit or stimulate an enzyme's activity
- Allosteric regulation occurs when a regulatory molecule binds to a protein at one site and affects the protein's function at another site

Figure 6.20a

(a) Allosteric activators and inhibitors

Allosteric Activation and Inhibition

- Most allosterically regulated enzymes are made from polypeptide subunits, each with its own active site
- The enzyme complex has active and inactive forms
- The binding of an activator stabilizes the active form of the enzyme
- The binding of an inhibitor stabilizes the inactive form of the enzyme

- Cooperativity is a form of allosteric regulation that can amplify enzyme activity
- One substrate molecule primes an enzyme to act on additional substrate molecules more readily
- Cooperativity is allosteric because binding by a substrate to one active site affects catalysis in a different active site

(b) Cooperativity: another type of allosteric activation

© 2018 Pearson Education Ltd.

Figure 6.21

Feedback Inhibition

- In feedback inhibition, the end product of a metabolic pathway shuts down the pathway
- Feedback inhibition prevents a cell from wasting chemical resources by synthesizing more product than is needed

Localization of Enzymes Within the Cell

- Structures within the cell help bring order to metabolic pathways
- Some enzymes act as structural components of membranes
- In eukaryotic cells, some enzymes reside in specific organelles; for example, enzymes for cellular respiration are located in mitochondria

Figure 6.22

Course of E_A without reaction without E_A with enzyme enzyme enzyme is lower Free energy Reactants/ ∆G is unaffected Course of by enzyme reaction with enzyme **Products**

Figure 6.UN04

Progress of the reaction →